If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+19x-4=0
a = 3; b = 19; c = -4;
Δ = b2-4ac
Δ = 192-4·3·(-4)
Δ = 409
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{409}}{2*3}=\frac{-19-\sqrt{409}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{409}}{2*3}=\frac{-19+\sqrt{409}}{6} $
| 3^x^2+19x-4=0 | | 20-3k=k+3 | | x=(0.75)^1/7 | | X+.2x=950 | | 9e(5e+6)+90=180 | | -3m=2m-4 | | 9e(5e+6)=90 | | 66g^2+16g=0 | | 12+6x/3=5-9/3 | | 3/70=x/350 | | 2/7*(x)=1.25. | | x^2+8x-1600=0 | | 0=-735-73.783t+4.905t^2 | | 6x+6=8x-12+5 | | 14+n-7=22 | | 3(x+5)^2-162=0 | | x+(3x+4)+(x+12)=180 | | 5(x+3)^3=79 | | 9x-2x-8=0 | | 2x-30=30-x | | 729^x=(1/3)^x+3 | | 5x-24-2x=2x+16 | | 0.45x=38.70 | | 3x^2=74 | | 219736.50=257.5^2+257.5x+x^2 | | 66306.25=257.5x+x^2 | | 9p+9-5=-12+6p | | 0.2197=66306.25+257.5x+x^2 | | -66306.014=257.5x+x^2 | | 2/9+24=x | | 6x/6+20=15 | | (2t-5)(t+3)=0 |